Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38605232

RESUMO

RATIONALE: The mechanisms underlying major depressive disorder (MDD) in children and adolescents are unclear. Metabolomics has been utilized to capture metabolic signatures of various psychiatric disorders; however, urinary metabolic profile of MDD in children and adolescents has not been studied. OBJECTIVES: We analyzed urinary metabolites in children and adolescents with MDD to identify potential biomarkers and metabolic signatures. METHODS: Here, liquid chromatography-mass spectrometry was used to profile metabolites in urine samples from 192 subjects, comprising 80 individuals with antidepressant-naïve MDD (AN-MDD), 37 with antidepressant-treated MDD (AT-MDD) and 75 healthy controls (HC). We performed orthogonal partial least squares discriminant analysis to identify differential metabolites and employed logistic regression and receiver operating characteristic analysis to establish a diagnostic panel. RESULTS: In total, 143 and 71 differential metabolites were identified in AN-MDD and AT-MDD, respectively. These were primarily linked to lipid metabolism, molecular transport, and small molecule biochemistry. AN-MDD additionally exhibited dysregulated amino acid metabolism. Compared to HC, a diagnostic panel of seven metabolites displayed area under the receiver operating characteristic curves of 0.792 for AN-MDD, 0.828 for AT-MDD, and 0.799 for all MDD. Furthermore, the urinary metabolic profiles of children and adolescents with MDD significantly differed from those of adult MDD. CONCLUSIONS: Our research suggests dysregulated amino acid metabolism and lipid metabolism in the urine of children and adolescents with MDD, similar to results in plasma metabolomics studies. This contributes to the comprehension of mechanisms underlying children and adolescents with MDD.

2.
Transl Psychiatry ; 14(1): 163, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531835

RESUMO

Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Esquizofrenia/metabolismo , Metabolômica , Metaboloma
3.
Cell Death Discov ; 10(1): 139, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485739

RESUMO

Esophageal squamous cell carcinoma (ESCC) remains an important health concern in developing countries. Patients with advanced ESCC have a poor prognosis and survival rate, and achieving early diagnosis remains a challenge. Metabolic biomarkers are gradually gaining attention as early diagnostic biomarkers. Hence, this multicenter study comprehensively evaluated metabolism dysregulation in ESCC through an integrated research strategy to identify key metabolite biomarkers of ESCC. First, the metabolic profiles were examined in tissue and serum samples from the discovery cohort (n = 162; ESCC patients, n = 81; healthy volunteers, n = 81), and ESCC tissue-induced metabolite alterations were observed in the serum. Afterward, RNA sequencing of tissue samples (n = 46) was performed, followed by an integrated analysis of metabolomics and transcriptomics. The potential biomarkers for ESCC were further identified by censoring gene-metabolite regulatory networks. The diagnostic value of the identified biomarkers was validated in a validation cohort (n = 220), and the biological function was verified. A total of 457 dysregulated metabolites were identified in the serum, of which 36 were induced by tumor tissues. The integrated analyses revealed significant alterations in the purine salvage pathway, wherein the abundance of hypoxanthine/xanthine exhibited a positive correlation with HPRT1 expression and tumor size. A diagnostic model was developed using two purine salvage-associated metabolites. This model could accurately discriminate patients with ESCC from normal individuals, with an area under the curve (AUC) (95% confidence interval (CI): 0.680-0.843) of 0.765 in the external cohort. Hypoxanthine and HPRT1 exerted a synergistic effect in terms of promoting ESCC progression. These findings are anticipated to provide valuable support in developing novel diagnostic approaches for early ESCC and enhance our comprehension of the metabolic mechanisms underlying this disease.

4.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992711

RESUMO

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Progressão da Doença , Receptores Dopaminérgicos
5.
Environ Health Perspect ; 131(9): 97006, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37702489

RESUMO

BACKGROUND: Parabens, found in everyday items from personal care products to foods, are chemicals with endocrine-disrupting activity, which has been shown to influence reproductive function. OBJECTIVES: This study investigated whether urinary concentrations of methylparaben, propylparaben, or butylparaben were associated with the urinary metabolome during the periconceptional period, a critical window for female reproductive function. Changes to the periconceptional urinary metabolome could provide insights into the mechanisms by which parabens could impact fertility. METHODS: Urinary paraben concentrations were measured in paired pre- and postconception urine samples from 42 participants in the Early Pregnancy Study, a prospective cohort of 221 women attempting to conceive. We performed untargeted and targeted metabolomics analyses using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. We used principal component analysis, orthogonal partial least-squares discriminant analysis, and permutation testing, coupled with univariate statistical analyses, to find metabolites associated with paraben concentration at the two time points. Potential confounders were identified with a directed acyclic graph and used to adjust results with multivariable linear regression. Metabolites were identified using fragmentation data. RESULTS: Seven metabolites were associated with paraben concentration (variable importance to projection score >1, false discovery rate-corrected q-value<0.1). We identified four diet-related metabolites to the Metabolomics Standards Initiative (MSI) certainty of identification level 2, including metabolites from smoke flavoring, grapes, and olive oil. One metabolite was identified to the class level only (MSI level 3). Two metabolites were unidentified (MSI level 4). After adjustment, three metabolites remained associated with methylparaben and propylparaben, two of which were diet-related. No metabolomic markers of endocrine disruption were associated with paraben concentrations. DISCUSSION: This study identified novel relationships between urinary paraben concentrations and diet-related metabolites but not with metabolites on endocrine-disrupting pathways, as hypothesized. It demonstrates the feasibility of integrating untargeted metabolomics data with environmental exposure information and epidemiological adjustment for confounders. The findings underscore a potentially important connection between diet and paraben exposure, with applications to nutritional epidemiology and dietary exposure assessment. https://doi.org/10.1289/EHP12125.


Assuntos
Metabolômica , Parabenos , Gravidez , Humanos , Feminino , Estudos Prospectivos , Metaboloma
6.
Sci Rep ; 13(1): 8425, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225755

RESUMO

Artificial intelligence has been successfully applied in various fields, one of which is computer vision. In this study, a deep neural network (DNN) was adopted for Facial emotion recognition (FER). One of the objectives in this study is to identify the critical facial features on which the DNN model focuses for FER. In particular, we utilized a convolutional neural network (CNN), the combination of squeeze-and-excitation network and the residual neural network, for the task of FER. We utilized AffectNet and the Real-World Affective Faces Database (RAF-DB) as the facial expression databases that provide learning samples for the CNN. The feature maps were extracted from the residual blocks for further analysis. Our analysis shows that the features around the nose and mouth are critical facial landmarks for the neural networks. Cross-database validations were conducted between the databases. The network model trained on AffectNet achieved 77.37% accuracy when validated on the RAF-DB, while the network model pretrained on AffectNet and then transfer learned on the RAF-DB results in validation accuracy of 83.37%. The outcomes of this study would improve the understanding of neural networks and assist with improving computer vision accuracy.


Assuntos
Lesões Acidentais , Reconhecimento Facial , Humanos , Inteligência Artificial , Computadores , Redes Neurais de Computação
7.
Redox Biol ; 62: 102699, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086630

RESUMO

Aberrant tumor metabolism is a hallmark of cancer in which metabolic rewiring can support tumor growth under nutrient deficient conditions. KRAS mutations occur in 35-45% of all colorectal cancer (CRC) cases and are difficult to treat. The relationship between mutant KRAS and aberrant metabolism in CRCs has not been fully explored and could be a target for intervention. We previously acquired non-targeted metabolomics data from 161 tumor tissues and 39 normal colon tissues from stage I-III chemotherapy naïve CRC patients. In this study, we revealed that only in male patients, tumors with KRAS mutations had several altered pathways that suppress ferroptosis, including glutathione biosynthesis, transsulfuration activity, and methionine metabolism. To validate this phenotype, MC38 CRC cells (KRASG13R) were treated with a ferroptosis inducer; RAS-selected lethal (RSL3). RSL3 altered metabolic pathways in the opposite direction to that seen in KRAS mutant tumors from male patients confirming a suppressed ferroptosis metabolic phenotype in these patients. We further validated gene expression data from an additional CRC patient cohort (Gene Expression Omnibus (GEO)), and similarly observed differences in ferroptosis-related genes by sex and KRAS status. Further examination of the relationship between these genes and overall survival (OS) in the GEO cohort showed that KRAS mutant tumors are associated with poorer 5-year OS compared to KRAS wild type tumors, and only in male patients. Additionally, high compared to low expression of GPX4, FTH1, FTL, which suppress ferroptosis, were associated with poorer 5-year OS only in KRAS mutant tumors from male CRC patients. Additionally, low compared to high expression of ACSL4 was associated with poorer OS for this group. Our results show that KRAS mutant tumors from male CRC patients have suppressed ferroptosis, and gene expression changes that suppress ferroptosis associate with adverse outcomes for these patients, revealing a novel potential avenue for therapeutic approaches.


Assuntos
Neoplasias Colorretais , Ferroptose , Proteínas Proto-Oncogênicas p21(ras) , Feminino , Humanos , Masculino , Linhagem Celular Tumoral , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metabolômica , Prognóstico , Fatores Sexuais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
8.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909561

RESUMO

Aberrant tumor metabolism is a hallmark of cancer in which metabolic rewiring can support tumor growth under nutrient deficient conditions. KRAS mutations occur in 35-45% of all colorectal cancer (CRC) cases and are difficult to treat. The relationship between mutant KRAS and aberrant metabolism in CRCs has not been fully explored and could be a target for intervention. We previously acquired non-targeted metabolomics data from 161 tumor tissues and 39 normal colon tissues from stage I-III chemotherapy naïve CRC patients. In this study, we revealed that tumors from male patients with KRAS mutations only, had several altered pathways that suppress ferroptosis, including glutathione biosynthesis, transsulfuration activity, and methionine metabolism. To validate this phenotype, MC38 CRC cells (KRAS G13R ) were treated with a ferroptosis inducer; RAS-selected lethal (RSL3). RSL3 altered metabolic pathways in the opposite direction to that seen in KRAS mutant tumors from male patients confirming a suppressed ferroptosis metabolic phenotype in these patients. We further validated gene expression data from an additional CRC patient cohort (Gene Expression Omnibus (GEO), and similarly observed differences in ferroptosis-related genes by sex and KRAS status. Further examination of the relationship between these genes and overall survival (OS) in the GEO cohort showed that KRAS mutant tumors are associated with poorer 5-year OS compared to KRAS wild type tumors, and only in male patients. Additionally, high compared to low expression of GPX4, FTH1, FTL , which suppressed ferroptosis, were associated with poorer 5-year OS only in KRAS mutant tumors from male CRC patients. Low compared to high expression of ACSL4 was associated with poorer OS for this group. Our results show that KRAS mutant tumors from male CRC patients have suppressed ferroptosis, and gene expression changes that suppress ferroptosis associate with adverse outcomes for these patients, revealing a novel potential avenue for therapeutic approaches.

9.
Biotechnol Genet Eng Rev ; : 1-22, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36892223

RESUMO

OBJECTIVE: To investigate whether and how ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix can improve rabbit temporomandibular joint osteoarthrosis. METHOD: Isolate and culture adipose stem cells, measure the activity of differentiated chondrocytes by MTT assay and expression of type II collagen in these cells by immunohistochemistry, in order to evaluate the effect of ginsenoside Rg1 on adipose stem cell proliferation and differentiation into chondrocytes.32 New Zealand white rabbits were randomly divided into four groups: blank group, model group, control group and experimental group, 8 in each group. Osteoarthritis model was established by intra-articular injection of papain. Two weeks after successful model building, medication was given for the rabbits in control group and experimental group. 0.6 mL ginsenoside Rg1/ ADSCs suspension was injected into superior joint space for the rabbits in control group, once a week; 0.6 mL ginsenoside Rg1/ ADSCs complex was injected for the rabbits in experimental group, once a week. RESULTS: Ginsenoside Rg1 can promote ADSCs-derived chondrocytes' activity and expression of type II collagen. Scanning electron microscopy histology images showed cartilage lesions of the experimental group was significantly improved in comparison with control group. CONCLUSION: Ginsenoside Rg1 can promote ADSCs differentiate into chondrocytes, and Ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix can significantly improve rabbit temporomandibular joint osteoarthrosis.

11.
Nat Commun ; 13(1): 7802, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528604

RESUMO

Neoadjuvant chemoradiotherapy (nCRT) has become the standard treatment for patients with locally advanced rectal cancer (LARC). Therapeutic efficacy of nCRT is significantly affected by treatment-induced diarrhea and hematologic toxicities. Metabolic alternations in cancer therapy are key determinants to therapeutic toxicities and responses, but exploration in large-scale clinical studies remains limited. Here, we analyze 743 serum samples from 165 LARC patients recruited in a phase III clinical study using untargeted metabolomics and identify responsive metabolic traits over the course of nCRT. Pre-therapeutic serum metabolites successfully predict the chances of diarrhea and hematologic toxicities during nCRT. Particularly, levels of acyl carnitines are linked to sex disparity in nCRT-induced diarrhea. Finally, we show that differences in phenylalanine metabolism and essential amino acid metabolism may underlie distinct therapeutic responses of nCRT. This study illustrates the metabolic dynamics over the course of nCRT and provides potential to guide personalized nCRT treatment using responsive metabolic traits.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Quimiorradioterapia/efeitos adversos , Diarreia , Terapia Neoadjuvante/efeitos adversos , Neoplasias Retais/terapia , Reto/metabolismo
12.
Nat Commun ; 13(1): 6656, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333358

RESUMO

Liquid chromatography - mass spectrometry (LC-MS) based untargeted metabolomics allows to measure both known and unknown metabolites in the metabolome. However, unknown metabolite annotation is a major challenge in untargeted metabolomics. Here, we develop an approach, namely, knowledge-guided multi-layer network (KGMN), to enable global metabolite annotation from knowns to unknowns in untargeted metabolomics. The KGMN approach integrates three-layer networks, including knowledge-based metabolic reaction network, knowledge-guided MS/MS similarity network, and global peak correlation network. To demonstrate the principle, we apply KGMN in an in vitro enzymatic reaction system and different biological samples, with ~100-300 putative unknowns annotated in each data set. Among them, >80% unknown metabolites are corroborated with in silico MS/MS tools. Finally, we validate 5 metabolites that are absent in common MS/MS libraries through repository mining and synthesis of chemical standards. Together, the KGMN approach enables efficient unknown annotations, and substantially advances the discovery of recurrent unknown metabolites for common biological samples from model organisms, towards deciphering dark matter in untargeted metabolomics.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Metabolômica/métodos , Metaboloma , Redes e Vias Metabólicas , Cromatografia Líquida
13.
Biol Sex Differ ; 13(1): 61, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274154

RESUMO

BACKGROUND: Bile acids are known to be genotoxic and contribute to colorectal cancer (CRC). However, the link between CRC tumor bile acids to tumor location, patient sex, microbiome, immune-regulatory cells, and prognosis is not clear. METHODS: We conducted bile acid analysis using targeted liquid chromatography-mass spectrometry (LC-MS) on tumor tissues from CRC patients (n = 228) with survival analysis. We performed quantitative immunofluorescence (QIF) on tumors to examine immune cells. RESULTS: Twelve of the bile acids were significantly higher in right-sided colon tumors compared to left-sided colon tumors. Furthermore, in male patients, right-sided colon tumors had elevated secondary bile acids (deoxycholic acid, lithocholic acid, ursodeoxycholic acid) compared to left-sided colon tumors, but this difference between tumors by location was not observed in females. A high ratio of glycoursodeoxycholic to ursodeoxycholic was associated with 5-year overall survival (HR = 3.76, 95% CI = 1.17 to 12.1, P = 0.026), and a high ratio of glycochenodeoxycholic acid to chenodeoxycholic acid was associated with 5-year recurrence-free survival (HR = 3.61, 95% CI = 1.10 to 11.84, P = 0.034). We also show correlation between these bile acids and FoxP3 + T regulatory cells. CONCLUSIONS: This study revealed that the distribution of bile acid abundances in colon cancer patients is tumor location-, age- and sex-specific, and are linked to patient prognosis. This study provides new implications for targeting bile acid metabolism, microbiome, and immune responses for colon cancer patients by taking into account primary tumor location and sex.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Feminino , Humanos , Masculino , Ácidos e Sais Biliares , Ácido Ursodesoxicólico/uso terapêutico , Ácido Ursodesoxicólico/metabolismo , Ácido Glicoquenodesoxicólico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ácido Litocólico/metabolismo , Ácido Quenodesoxicólico/metabolismo , Distribuição por Sexo , Fatores de Transcrição Forkhead
14.
World J Clin Cases ; 10(18): 6082-6090, 2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35949825

RESUMO

BACKGROUND: Enhanced recovery after surgery advocates that consuming carbohydrates two hours before anesthesia is beneficial to the patient's recovery. Patients with diabetes are prone to delayed gastric emptying. Different guidelines for preoperative carbohydrate consumption in patients with diabetes remain controversial due to concerns about the risk of regurgitation, aspiration and hyperglycemia. Ultrasonic gastric volume (GV) assessment and blood glucose monitoring can comprehensively evaluate the safety and feasibility of preoperative carbohydrate intake in type 2 diabetes (T2D) patients. AIM: To evaluate the impact of preoperative carbohydrate loading on GV before anesthesia induction in T2D patients. METHODS: Patients with T2D receiving surgery under general anesthesia from December 2019 to December 2020 were included. A total of 78 patients were randomly allocated to 4 groups receiving 0, 100, 200, or 300 mL of carbohydrate loading 2 h before anesthesia induction. Gastric volume per unit weight (GV/W), Perlas grade, changes in blood glucose level, and risk of reflux and aspiration were evaluated before anesthesia induction. RESULTS: No significant difference was found in GV/W among the groups before anesthesia induction (P > 0.05). The number of patients with Perlas grade II and GV/W > 1.5 mL/kg did not differ among the groups (P > 0.05). Blood glucose level increased by > 2 mmol/L in patients receiving 300 mL carbohydrate drink, which was significantly higher than that in groups 1 and 2 (P < 0.05). CONCLUSION: Preoperative carbohydrate loading < 300 mL 2 h before induction of anesthesia in patients with T2D did not affect GV or increase the risk of reflux and aspiration. Blood glucose levels did not change significantly with preoperative carbohydrate loading of < 200 mL. However, 300 mL carbohydrate loading may increase blood glucose levels in patients with T2D before induction of anesthesia.

15.
Anal Chem ; 94(36): 12472-12480, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36044263

RESUMO

N-Acylethanolamines (NAE) are a class of essential signaling lipids that are involved in a variety of physiological processes, such as energy homeostasis, anti-inflammatory responses, and neurological functions. NAE lipids are functionally different yet structurally similar and often have low concentrations in biological systems. Therefore, the comprehensive analysis of NAE lipids in complex biological matrices is very challenging. In this work, we developed an ion mobility-mass spectrometry (IM-MS) based four-dimensional (4D) untargeted technology for comprehensive analysis of NAE lipids. First, we employed the picolinyl derivatization to significantly improve ionization sensitivity of NAE lipids by 2-9-fold. Next, we developed a two-step quantitative structure-retention relationship (QSRR) strategy and used the AllCCS software to curate a 4D library for 170 NAE lipids with information on m/z, retention time, collision cross-section, and MS/MS spectra. Then, we developed a 4D untargeted technology empowered by the 4D library to support unambiguous identifications of NAE lipids. Using this technology, we readily identified a total of 68 NAE lipids across different biological samples. Finally, we used the 4D untargeted technology to comprehensively quantify 47 NAE lipids in 10 functional regions in the mouse brain and revealed a broad spectrum of the age-associated changes in NAE lipids across brain regions. We envision that the comprehensive analysis of NAE lipids will strengthen our understanding of their functions in regulating distinct physiological activities.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Animais , Encéfalo , Etanolaminas , Espectrometria de Mobilidade Iônica/métodos , Lipídeos/análise , Camundongos
16.
J Clin Pharm Ther ; 47(10): 1676-1683, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35765728

RESUMO

WHAT IS KNOWN AND OBJECTIVE: A previous randomized clinical trial concluded that an optimal concentration of 0.3% ropivacaine could provide satisfactory analgesia for breast cancer patients undergoing modified radical mastectomy. We wondered if a smaller volume (30 ml vs. 40 ml) of 0.3% ropivacaine could still provide adequate analgesia in an ultrasound-guided PECS II block in modified radical mastectomy. METHODS: We performed a prospective parallel randomized double-blind controlled clinical trial. Eligible patients were assigned to either the P30 or P40 group (30 or 40 ml of 0.3% ropivacaine, respectively). The skin area of hypoesthesia, anaesthetic plane determined with ultrasound, pain visual analogue scale (VAS), anaesthetic dosages, and complications were recorded. Serum levels of interleukin-1ß and interleukin-6 were measured postoperatively. RESULTS AND DISCUSSION: A total of 40 patients completed the trials, with 20 patients in each group. Although the skin area of hypoesthesia and the anaesthetic planes were significantly larger in the P40 group compared with the P30 group (p < 0.05), the VAS, analgesic and opioid doses, serum cytokine levels, anaesthetic toxicity, and complications had no significant differences between the two groups. WHAT IS NEW AND CONCLUSION: Compared with 40 ml, 30 ml of 0.3% ropivacaine could provide adequate analgesia and reduce surgical stress in patients undergoing modified radical mastectomy for breast cancer.


Assuntos
Analgesia , Neoplasias da Mama , Nervos Torácicos , Analgésicos Opioides , Neoplasias da Mama/cirurgia , Método Duplo-Cego , Feminino , Humanos , Hipestesia/cirurgia , Interleucina-1beta , Interleucina-6 , Mastectomia , Mastectomia Radical Modificada/métodos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Estudos Prospectivos , Ropivacaina , Ultrassonografia de Intervenção
17.
Nat Commun ; 13(1): 3518, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725845

RESUMO

System-wide metabolic homeostasis is crucial for maintaining physiological functions of living organisms. Stable-isotope tracing metabolomics allows to unravel metabolic activity quantitatively by measuring the isotopically labeled metabolites, but has been largely restricted by coverage. Delineating system-wide metabolic homeostasis at the whole-organism level remains challenging. Here, we develop a global isotope tracing metabolomics technology to measure labeled metabolites with a metabolome-wide coverage. Using Drosophila as an aging model organism, we probe the in vivo tracing kinetics with quantitative information on labeling patterns, extents and rates on a metabolome-wide scale. We curate a system-wide metabolic network to characterize metabolic homeostasis and disclose a system-wide loss of metabolic coordinations that impacts both intra- and inter-tissue metabolic homeostasis significantly during Drosophila aging. Importantly, we reveal an unappreciated metabolic diversion from glycolysis to serine metabolism and purine metabolism as Drosophila aging. The developed technology facilitates a system-level understanding of metabolic regulation in living organisms.


Assuntos
Drosophila , Metabolômica , Envelhecimento , Animais , Isótopos de Carbono , Marcação por Isótopo , Metaboloma
18.
Anal Chim Acta ; 1210: 339886, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35595363

RESUMO

Lipids play vital roles in many physiological and pathological processes in living organisms. Due to the high structural diversity and the numerous isomers and isobars of lipids, high-coverage and high-accuracy lipidomic analysis of complex biological samples remain the bottleneck to investigate lipid metabolism. Here, we developed the trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) based four-dimensional untargeted lipidomics to support accurate lipid identification and quantification in biological samples. We first demonstrated that the TIMS based multi-dimensional separation improved the differentiations of isomeric and isobaric lipids, and increased the purity of precursor ion isolation and the quality of MS/MS spectra. Hyphenation of TIMS and PASEF technologies significantly improved the coverages of MS/MS spectra. These technological advantages jointly improved the coverage and accuracy of lipid identification in untargeted lipidomics. We further demonstrated that the CCS values of lipids acquired using TIMS were highly consistent with those from drift tube ion mobility spectrometry (DTIMS). Lipid identification and quantification results of NIST human plasma samples were also verified with inter-laboratory reports. Finally, we applied the TIMS-MS based untargeted lipidomics to characterize the spatial distributions of 1393 distinctive lipids in the mouse brain, and demonstrated that diverse lipid distributions and compositions among brain regions contributed to different functions of brain regions. Altogether, TIMS-MS based four-dimensional untargeted lipidomics significantly improved the coverage and accuracy of untargeted metabolomics, thereby facilitating a system-level understanding of lipid metabolism in biological organisms.


Assuntos
Espectrometria de Mobilidade Iônica , Lipidômica , Animais , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Lipídeos/análise , Camundongos , Espectrometria de Massas em Tandem
19.
Metabolites ; 12(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208238

RESUMO

The interplay between the sex-specific differences in tumor metabolome and colorectal cancer (CRC) prognosis has never been studied and represents an opportunity to improve patient outcomes. This study examines the link between tumor metabolome and prognosis by sex for CRC patients. Using untargeted metabolomics analysis, abundances of 91 metabolites were obtained from primary tumor tissues from 197 patients (N = 95 females, N = 102 males) after surgical colectomy for stage I-III CRC. Cox Proportional hazard (PH) regression models estimated the associations between tumor metabolome and 5-year overall survival (OS) and recurrence-free survival (RFS), and their interactions with sex. Eleven metabolites had significant sex differences in their associations with 5-year OS, and five metabolites for 5-year RFS. The metabolites asparagine and serine had sex interactions for both OS and RFS. Furthermore, in the asparagine synthetase (ASNS)-catalyzed asparagine synthesis pathway, asparagine was associated with substantially poorer OS (HR (95% CI): 6.39 (1.78-22.91)) and RFS (HR (95% CI): 4.36 (1.39-13.68)) for female patients only. Similar prognostic disadvantages in females were seen in lysophospholipid and polyamine synthesis. Unique metabolite profiles indicated that increased asparagine synthesis was associated with poorer prognosis for females only, providing insight into precision medicine for CRC treatment stratified by sex.

20.
Nat Commun ; 12(1): 4343, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267224

RESUMO

Aberrant sterol lipid metabolism is associated with physiological dysfunctions in the aging brain and aging-dependent disorders such as neurodegenerative diseases. There is an unmet demand to comprehensively profile sterol lipids spatially and temporally in different brain regions during aging. Here, we develop an ion mobility-mass spectrometry based four-dimensional sterolomics technology leveraged by a machine learning-empowered high-coverage library (>2000 sterol lipids) for accurate identification. We apply this four-dimensional technology to profile the spatially resolved landscapes of sterol lipids in ten functional regions of the mouse brain, and quantitatively uncover ~200 sterol lipids uniquely distributed in specific regions with concentrations spanning up to 8 orders of magnitude. Further spatial analysis pinpoints age-associated differences in region-specific sterol lipid metabolism, revealing changes in the numbers of altered sterol lipids, concentration variations, and age-dependent coregulation networks. These findings will contribute to our understanding of abnormal sterol lipid metabolism and its role in brain diseases.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Lipídeos/química , Esteróis/análise , Envelhecimento/fisiologia , Animais , Feminino , Isomerismo , Lipidômica/métodos , Lipídeos/análise , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Esteróis/química , Esteróis/metabolismo , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...